Positionally selective growth of embryonic spinal cord neurites on muscle membranes.

نویسندگان

  • H Wang
  • S R Chadaram
  • A S Norton
  • R Lewis
  • J Boyum
  • W Trumble
  • J R Sanes
  • M B Laskowski
چکیده

Motor neurons from distinct positions along the rostrocaudal axis generally innervate muscles or muscle fibers from corresponding axial levels. These topographic maps of connectivity are partially restored after denervation or transplantation under conditions in which factors of timing and proximity are eliminated. It is therefore likely that motor neurons and some intramuscular structures bear cues that bias synapse formation in favor of positionally matched partners. To localize these cues, we studied outgrowth of neurites from embryonic spinal cord explants on carpets of membranes isolated from perinatal rat muscles. Neurites from rostral (cervical) and caudal (lumbar) spinal cord slices exhibit distinct growth preferences. In many instances, rostrally derived neurites grew selectively on membranes from forelimb muscles or from a single thoracic muscle (the serratus anterior) when given a choice between these membranes and membranes from hindlimb muscles or laminin. Caudally derived neurites almost never exhibited such rostral preferences, but instead preferred membranes from hindlimb muscles or a single hindlimb muscle (the gluteus) to rostral muscles or laminin. Likewise, spinal neurites exhibited distinct position-related preferences for outgrowth on membranes of clonal myogenic cell lines derived from specific rostral and caudal muscles. Taken together these results suggest that the membranes of motor axons and myotubes bear complementary labels that vary with rostrocaudal position and regulate neuromuscular connectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture

Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. Th...

متن کامل

Topographic specificity within membranes of a single muscle detected in vitro.

Spinal motor pools project to target muscles forming distinct rostrocaudal topographic maps during development and regeneration. To define the mechanisms underlying these neuromuscular maps we studied the preferential outgrowth of embryonic spinal cord neurites on muscle membranes from different axial positions and explored the role of ephrin A ligands. We found all five ephrin As (EphAs) expre...

متن کامل

Effects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes

     The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...

متن کامل

An in vitro model of the rat dorsal root entry zone reveals developmental changes in the extent of sensory axon growth into the spinal cord.

The dorsal root entry zone (DREZ) forms the junction between the dorsal roots of the peripheral nervous system and the spinal cord. In rats older than 1 week, lesioned primary sensory axons regenerate within the dorsal roots but stop at the DREZ, and are thus unable to reconnect with the spinal cord. To analyze the causes of this failure, we have developed a culture model of the interaction of ...

متن کامل

Histological and Functional Benefit Following Transplantation of Motor Neuron Progenitors to the Injured Rat Spinal Cord

BACKGROUND Motor neuron loss is characteristic of cervical spinal cord injury (SCI) and contributes to functional deficit. METHODOLOGY/PRINCIPAL FINDINGS In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP) derived from human e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 1999